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Abstract—A balanced public transport system is essential
for environmental, social and economic sustainability and is a
prerequisite for ensuring the quality of life of a city’s inhabitants.
In such manner, it is crucial to compose a traffic network
capable of match passengers’ expectations. However different
and conflicting interests have to be addressed. Passengers want
to travel as fast as possible, waiting as little as necessary and
making as few transfers as possible. On the contrary, operators
seek to minimize costs in order to achieve higher profits.

Determining customised routes and their frequency adjusted
to demand can highly affect the costs and efficiency of the
urban transportation system. A change in transit frequency can
influence not only route capacity but also waiting time. Variation
in waiting time will affect the passengers’ route choice strategy.

In this thesis, we extend previous work of other authors, that
were focused on origin, destination and interchange inference
and transit network design. In this context, our work tackles
simultaneously the two first stages of the overall operational
planning process for public transportation networks, network
design and frequency setting.

Moreover, it will be studied different metrics regarding pub-
lic transportation activity, especially waiting and travel time,
transfers number, but also bus empty seats that constitute an
unproductive cost to transit companies.

It will be considered transit data from the city of Lisbon to
assess the efficacy of the computed methods.

Index Terms—Transit Network Design, Frequency Setting,
Genetic Algorithm

I. INTRODUCTION

In the 21st century, urban mobility has become one of the
key issues to metropolitan areas. The continuous rural exo-
dus and the increased preoccupation about the environmental
issues has conducted many different governmental policies,
mainly focused on the sustainable growth of urban areas.

It is safe to say that public transportation is considered a
crucial backbone of it, due to the fact it constitutes a reliable
mean of transportation at an affordable fare in high density
population zones, whilst emitting low carbon emissions.

Public transportation operators face a wide range of chal-
lenges related to its transit operation, such as unpredictability
of events or extreme weather conditions. At the same time,
these companies often struggle to strike the right balance
between its level of service at a competitive cost and the user’s
expectations, who greedily demand reduced waiting times at
stations, accuracy in bus or train arriving time, but also a
modern fleet with sufficient capacity.

Reducing users’ costs usually leads to increase in operator
costs, and vice versa. However, determining the most efficient
operation for both users and operators, for given levels of
service and cost requirements, is essential for the success of
such systems. [1]

Frequency setting is one of the the main activities in the
tactical planning of public transport operations. Allocating
frequencies of bus services in a city network is a multi-
criteria problem that typically considers the operational costs,
the passenger demand coverage and the service reliability. [2]

This thesis will address Transit Network Design (TND)
Problem and Frequency Setting (FS) Problem together. It will
be applied Automatic Data Collection System (ADCS) data
divided by different parts of the day during a week in order
to assess the appropriateness of the given route set.

The objective function contains several metrics regarding
passenger and operator costs. The latter includes empty seats.
As far as passenger costs is concerned, waiting and in-vehicle
time, transfers and unsatisfied demand will be measured.

The data sources treated in this thesis, were kindly provided
by Carris and Metropolitano de Lisboa, both transit operators
running in Lisbon area.

II. BACKGROUND

A. Transit Network Design

The aim of the transit route network design is to determine
a route configuration that achieves a certain desired objective,
subject to the constraints previously highlighted. As noted by
[3], network design elements are part of the overall operational
planning process for public transportation networks. The pro-
cess includes four steps: design of routes, setting frequencies,
developing timetables and scheduling buses and drivers

The first stage is optimization of bus routes based on the
demand matrix. The next stage involves proper determination
of bus frequencies on each route with respect to the demand
matrix. Scheduling optimal fleet to the routes based on the
predetermined timetables in second stage, budget limits and
location of the depots will be considered in this stage. In the
final stage, fleet crew and their roster table will be assigned.
[4]

B. Frequency Setting

The Frequency Setting problem determines the number of
trips for a given route to provide the best level of service as



possible in a planning period. Including service level, cost and
fleet size restrictions. Since frequency changes affect directly
route waiting and travel time, so this parameter impacts the
passengers’ perception of the level of service which may lead
to an increment or decrement of the system usage.

Bus transport planners have to consider the bus network
demand, fleet capacity and route characteristics in determining
bus service frequencies. At the same time, the bus operators
have to provide the bus service operation and management
based on the cost and benefit analysis of their investments.

The time between two vehicles offering a service, which
conveys exactly the same information as frequency, is known
as the headway. The service headway is the inverse of the
frequency.

Headway =
1

Frequency
(1)

The passenger’s arrival follows the uniform distribution, so
the average waiting time is assumed to be equal to half of the
headway of a route.

WaitingT ime =
Headway

2
(2)

We define a trip as a set of intermediate journeys, depending
whether there are interchanges thorough trip progression. In
the case of multiple routing options, the waiting time is
estimated by the average of the sum of the half of the
headways of all possible routes.

Journey Waiting Time =
Alternative 1 Headway

2 + ...+ Alternative n Headway
2

n
(3)

For the trips that include transfers, the waiting time is cal-
culated as the sum of all the intermediate journeys headways
that concern the trip.

Trip Waiting Time =
∑

Journey Waiting Time (4)

Frequency on each route should lie within a range. For
instance, high frequency on a route increases crowding or
congestion in the route [5]. On the other side, low frequency
leads to rise in waiting time and travel time [6].

C. Transit Route Network Design with Frequency Setting

The Transit Network Design and Frequency Setting Prob-
lem (TNDFSP) is a NP-hard, multi-constrained combinatorial
optimization problem with a vast search space for which the
evaluation of candidate solutions route sets can be both chal-
lenging and time consuming, with many potential solutions
rejected due to infeasibility. [7]

The TNDFS Problem addresses the conflicting interests
of passengers and transit agency. The key objectives of the
problem are to minimize the passenger time and the operating
cost. For improving the service level, it is essential to reduce
the in-vehicle travel time by providing a shortest path between
each pair of stops, to reduce the waiting time by increasing the

frequency of the vehicles and mitigate the number of transfers
by considering more direct trips for passengers. For operators,
it is economical to reduce the fleet cost and carbon tax by
restraining the fleet size and imposing a penalty for emissions,
respectively. There are two objective functions in this problem:
the first objective function represents the passengers time, and
the second objective function comprises of the operating cost.
Passenger time in the first objective varies with respect to
multiple parameters of waiting time and transfers [8].

In the first phase, the transit network design (TNDP) part
consists of finding a set of transit routes that together forms
an efficient transit network, serving users’ travel demand rep-
resented by an origin–destination matrix with minimum total
travel time and transfers, which include penalties for transfers
and trips which contain more than 2 transfers (unsatisfied
demand). Transit routes take into consideration existing trans-
portation network available and predefined stop points. During
the second phase, assigning frequencies (FSP) to transit routes
establishes waiting times and total capacity levels for routes,
and makes possible the calculation of the total necessary fleet
for network operation and also vehicles utilization.

D. Public Transportation Planning

The planning problem of designing public transport net-
works is highly complex. The main goal of most transit
agencies is to offer to the population a service of good quality
that allows passengers to travel easily at a reasonable fare.
However, they are subject to budgetary and management re-
strictions (number of buses or drivers, as well as bus capacity)
that make difficult meet costumers’ expectations.

By saying that, this organisation procedure treats a wide
range of settlements, from longstanding ones to real-time
choices. There are four distinct stages: strategic, tactical,
operational and real-time.

At the strategic level, transit planning is concerned not only
with the design of transit routes and networks, but also with
types of vehicle and stop spacing. This involves long-term
decisions focused on designing a network of routes to meet
passenger demand.

Operational-level planning aims at constructing vehicle and
crew schedules that minimize total costs. This includes to
vehicle scheduling, driver rostering, maintenance planning, as
well as parking and dispatching. [9]

Tactical planning is typically performed on an annual or
biannual basis. The aim is continually to address the tradeoff
between service quality and system costs, e.g., by reflecting
changes in demand or the available budget. [10]

Even when a solution for the planning process is given,
operation of transport systems is affected by uncertainty of
travel times. Extreme weather, accidents or passenger demand
at bus stops may cause such constraints. To address these
situations, real-time control strategies are implemented to
guarantee an efficient service during the operation of the
system. For instance, that may be holding vehicles in a station
or even skipping specific ones. [11]



E. Genetic Algorithm

Genetic algorithm (GA) is a search heuristic that mimics
the process of natural selection and genetics. It belongs to a
group of evolutionary algorithms. This procedure combines a
Darwinian survival-of-the-fittest with a randomized, yet struc-
tured information exchange among a population of artificial
chromosomes. The main attractions of the GA approach in-
volve simplicity of procedures, global perspective and inherent
parallelisation. [12]

GA begins with an initial population of strings (chromo-
somes), created randomly. Each chromosome is formed by a
set of variables (genes), encoded in binary values. In fact,
each string represents all the problem variables to the solution
context according user criteria. The creation of strings in the
initial population of GA is as simple as tossing an unbiased
coin. The successive coin flips (head=l, tail=0) can be used to
decide genes (bits) in a string. [13]

After initial population of possible solutions obtained, it is
necessary to determine how fit a gene is. This method, named
fitness function, is the most important feature of GA, because
it provides comparable scores among chromosomes.

In general, a fitness function F(x) is first derived from the
objective function and used in successive genetic operators.
For maximization problems, the fitness function can be con-
sidered to be the same as the objective function i.e.,

F (x) = f(x) (5)

However, for minimization problems, the goal is to find a
solution having the minimum objective function value. Thus,
the fitness can be calculated as the reciprocal of the objective
function value so that solutions with smaller objective function
value get larger fitness. [12] [13]

F (x) =
1

[1 + f(x)]
(6)

As stated above, GA simulates procedures that actually
happen in nature. Improvements, from one generation to the
next, are achieved using a set of three operators, reproduc-
tion/selection, crossover and mutation. Each one plays a
crucial role and serves a well-defined objective.

Reproduction/selection operator is the first applied on
a population. Basically, chooses the best chromosomes, in
other words, the ones with higher score in fitness function,
and copies them to the upcoming generation. This is how
we guarantee to strings (individuals) with high scores to be
selected more often than those with low scores, which may
not be selected at all. [14]

The crossover operator is the most significant phase in
GA, it combines two chromosomes to originate new offspring
(children) to the next generation. Crossover is performed by
randomly choose a bit which separates head and tail of the
string. Eventually, the tail of the two parents are swapped to
get new children.

In certain new offspring formed, some of their genes can
be subjected to a mutation with a low random probability.

This implies that some of the bits in the chromosome can
be flipped. Mutation operator occurs to maintain diversity and
avoid premature convergence.

In the end, after the completion of the previous procedures,
there is an evaluation of the new chromosomes. If the termi-
nation criteria are not met, the population is again operated
by above three operators and evaluated.

F. Data Formats and Tools

This thesis will be developed using a wide range of data
structures, such as GTFS (General Transit Feed Specification),
Automatic Fare Collection (AFC), Automatic Passenger Count
(APC), and Automatic Vehicle Location (AVL).

OpenStreetMap (OSM) will be used to design the optimized
network, analyse traffic aspects, compare current and shortest
paths between stations on the same route and compute travel
durations.

1) GTFS: General Transit Feed Specification (GTFS) de-
fines a common format used for transit operators to publish
public transportation schedules and related geographic infor-
mation. This format was created in 2005 by a Google Engineer,
Chris Harrelson, with the aim of incorporating transit data into
Google Maps.

GTFS comprises two different components:
• Static, that contains schedule, fare and geographic infor-

mation
• Real-time, that presents predictions, service alerts and

vehicle positions
A GTFS dataset is described by a collection of at least

6, and up to 13 CSV (comma separated values) files in
.txt format. Files agency.txt, calendar.txt, routes.txt, stops.txt,
stop times.txt and trips.txt are considered mandatory to a valid
GTFS data feed [15].

The main advantage of using GTFS is to access the detailed
schedule (stop times.txt) of each trip ID. [16]

Today, many operators publish publicly their routes and
schedules in GTFS format.

2) Automatic Data Collection: Operators have three
sources of automatically collected data obtainable:

The AFC (Automatic Fare Collection) system includes
several functionalities to monitor and control operations con-
cerning issuing, sale and validation of transport tickets. In
Lisbon, AFC system is denominated VIVA and integrates all
the transit operators in Lisbon area.

This system records the fare related information whenever a
passenger pays for a trip. It can be at a ticket vending machine,
in a fare gate or, in case of Carris, in a validator on-vehicle.
Its information comprehends card identifier and fare category
(standard, student, senior), timestamp and location.

In the matter of AFC systems, they can be classified as open,
hybrid or closed. While the Carris bus network is considered
an open system, as the passenger only needs to tap in, in the
case of Metro network, it is mandatory to tap at the entrance
and exit of the stations. In respect of a hybrid example, in
Lisbon area also, which has station from both categories,



there is Comboios de Portugal, state-owned company which
operates passenger trains.

Typically, open systems have been the main research interest
in the development of a traveler’s trip chain because the closed
system provides both origin and destination (O-D) information
of a trip. [16]

The APC (Automatic Passenger Count) includes tech-
nology devices, such as sensors or CCTV cameras which
accurately log boardings and alightings. Each record indicates
timestamp, card ID and trip information.

AVL (Automatic Vehicle Location) system periodically
indicates real-time vehicle localisation. This is used to inform
passengers bus arrival time estimation. AVL data notifies
about date, time, speed, trip information and of course, GPS
coordintates.

3) OpenStreetMap: OpenStreetMap is an open collabo-
rative project to create a free editable map of the world.
Volunteers gather location data using GPS, local knowledge,
and other free sources of information and upload it.

G. Data Sources

1) Carris: Carris is the main public transportation operator
at the surface directed by Lisbon’s City Hall. Its fleet is
comprised by 706 buses from different sizes and fuel types, 48
trams, 3 funiculars and even an elevator (Santa Justa lift). As
far as human resources are concerned, Carris employs nearly
2450 collaborators.

During the previous year (2019), a total of 139.5 million of
passengers travelled with Carris. [17]

2) Metro: Metropolitano de Lisboa is the public transit
operator responsible for the metro system of Lisbon. The
system includes 56 stations and 4 lines (Green, Yellow, Red
and Blue) summing up 44.5km of extension. Regarding its
capacity and dimension, Metropolitano de Lisboa assumes
1452 employees and 333 train carriages.

Throughout 2019, 173 million of passengers used Lisbon’s
underground system. [18]

III. ODX INFERENCE

A. Origin Inference

Origins are inferred by matching fare transactions to loca-
tions through transaction time stamps and card-reader identi-
fiers. When a card reader is installed at a fixed location, such as
a fare gate in a station, the reader’s location is simply assigned
to the transaction. When the reader is installed in a vehicle,
the transaction time stamp is compared with vehicle location
data to determine boarding stops. [19]

B. Destination Inference

Following the assumptions presented on Chapter 2 concern-
ing bus alighting times and locations, spatial information about
the passenger’s possible alighting location and subsequent
origin location is needed. By saying that, the distance between
the passenger’s next boarding location, referred to as target-
location, and each stop served by the current vehicle trip need
to be calculated, in order to determine which stop is closest.

In the event of a transaction of a bus boarding, the stop and
route field must be valid and cannot be on the last stop of
the route . Otherwise, the origin is assumed unknown and the
destination cannot be inferred.

If there are no other records in the card’s daily history,
the closest-stop rule cannot be applied. On the opposite, if
the transaction is the last transaction of the day, the daily
symmetry rule is applied, and the target location is defined
as the first origin of the day. Otherwise, the target location is
the next stage’s origin.

If the distance between the alighting stop candidate and the
next tap location is greater than a pre-established maximum
interchange distance, the destination can´t be inferred, because
is assumed that the passenger will not walk a significant
distance.

C. Bus Alighting Time Estimation

[20] exploits the GTFS file stop times.txt, which has, for
every trip, the scheduled arrival and departure times for every
serviced stop. In the case of the bus GTFS, the departure
time and arrival time have the same value in every entry. By
calculating the difference between the departure time for two
consecutive stops, the result is the time the bus takes between
those two stops. So, by adding up each consecutive stops plus
a bus stop time per stop, it is possible to deduce route or trip
duration.

D. Destination Inference Results

The percentage of destinations deduced is less than the half
(47.70%). The reasons rely on a significant percentage of cards
(40.28%) that are tapped only one time that day, which does
not enable us to consider closest stop rule. Furthermore, a
substantial distance between the alighting stop candidate and
the next tap location (12.02%) does not allow us to infer
destinations. It is assumed that passenger travelled by other
means of transport.

As it would be expected, this result is quite similar to [20],
where 45.24% of the destinations were inferred.

E. Bus Alighting Stop Distribution

The destination inference process computed by [20] was ca-
pable of deducing 47.70% of bus alighting times and locations.
This is quite inconclusive, as the majority of the journeys do
not have a destination.

In this thesis, one metric of our work is empty seats in a
bus during a route, which represents the difference between
entrances and alightings in a route stop. In pursuance of the
best optimization solution as possible, it is essential to have
the idyllic overall estimate of the demand.

By stating that, in order to overcome this lack of destinations
inferred, we do propose to assume an uniform distribution to
the trips that do not have destinations deduced. This means
that the number of passengers that enter in a specific stop,
which do not have a destination, are distributed equally to the
stops ahead of that route.



IV. TRANSIT NETWORK DESIGN WITH FREQUENCY
SETTING

As demand varies throughout the day, operator resources
vary as well. In the same manner that during peak hours there
is a heavy pressure on transit activity, during the night period
this tends to become residual.

In our case, day will be divided in 4 parts, which means 4
OD matrices that acknowledge demand alterations. The time
interval studied is from 7 (Monday) to 11 (Friday), October
2021. Each limit value corresponds to transaction timestamp,
that is bus entry time:

• 6:30 a.m to 10:59 a.m, which will be named first matrix
or morning matrix

• 11 a.m to 3:29 p.m, that will be titled as second matrix
or lunch matrix

• 3:30 p.m to 7:59 p.m, denominated as third matrix or
afternoon matrix

• 8 p.m to 0:30 a.m, designated as fourth matrix or night
matrix

In this chapter, we begin to present some preprocessing
steps in the OD matrix as well as problem representation
and its difficulties. Then, some procedures about frequency
assignment and adjustment. In the end, it will be pointed up
details regarding Genetic Algorithm.

A. Inputs

1) Input Matrices: Each matrix divides the day, so it
becomes easier to match resources according to demand.

Matrix Number of Validations Percentage
6:30 a.m - 10:59 a.m 158064 32%

11 a.m - 3.29 p.m 131580 27%
3:30 p.m - 7:59 p.m 165439 33%

8 p.m - 0:30 a.m 39079 8%
Total 494162 100%

Empirically, it is demonstrated that during peak hours there
are way more passengers compared to night hours. This diver-
gence on the values has to be considered regarding frequency
assignment.

B. Initial route set

In the first step of the genetic optimization process, it is
necessary to produce an initial solution (route set).

Firstly, one single route set of R (input value) routes is
obtained. Each of the R routes is a shortest path (based
on travel time) between a selected pair of stops. Using a
greedy algorithm, it is selected the R pairs (i, j) that have
the highest number of passengers that travel along the shortest
path between stops i, j. We will address this value as dsij .

dsij =
∑
m∈S

∑
n∈S

dmn (7)

where S is the set of stops that are in the shortest path
between i and j. dmn is the number of entries for pair (m,n)
in the OD matrix.

The greedy algorithm is summarised as:

1. Input the value of number of routes, R.
2. Initialise matrix DS, where DS =

{dsij | i, jϵ[0, 1, 2, . . . , |N − 1|]}
3. Find the pair (i, j) in DS with the highest dsij value.
4. i and j become the terminals of a new route.
5. Add every node in the shortest path between i and j to

the route.
6. Remove every node pair (m,n) that are satisfied by the

newly added route from DS
7. Check if the number of routes reaches N, stop. Other-

wise go to Step 3
Secondly, an initial headway is assigned to each route

created, equal across matrices. This value indicates the time
between consecutive services in a route. In section 5.4, it will
be specified this operation.

In the of the described procedure, there is an initial route
set and its headways.

C. Genetic Algorithm

In this chapter, we will describe Genetic Algortithm [20]
[21], but with some improvements to include frequency setting
.

Each gene is a route and its respective headway. Each
population is a possible solution to the problem, which is
comprised by a route set and its headways that vary throughout
the day. In our case, a possible solution includes a route set
and four headways, for each route, since we have four OD
matrices.

The objective function attempts to minimize costs of both
parties which take part on public transportation activity, pas-
sengers and transit operators.

1) Objective Function: The objective function defines the
aim of the optimization process. In our case, this equation
describes the quality of a solution, which intends to minimize
costs of all stakeholders associated with public transportation
operation. This costs can be given by T :

T = passenger weight∗(ATT+AWT+w∗ATR)+operator weight∗(AES)

Where each metric stands for:
• ATT: Average In-Vehicle Time. The average time a

passenger spends in-vehicle when travelling
• AWT: Average Waiting Time. The average time a pas-

senger has to wait at route stop
• ATR: Average Number of Transfers. The average number

of transfers a passenger has to experience, w is a penalty
equal to AWT

• AES: Average Empty Seats. The average number of
empty seats across all network

Metrics are measured considering entity weight, which
admits divergent interpretation of cost. While from passengers’
point of view, cost means time taken travelling or waiting
for the bus in the station, but also annoyance or discomfort
on transferring between buses and routes. From operators
perspective, empty seats are a sign of prejudice, as buses are



Fig. 1. Solution Topology

not operating at a reasonable occupation, although fuel cost
and vehicles depreciation remain stable.

As we are dealing with a route set which contains different
headways across matrices, there is a fitness value for each
matrix (part of the day), hence we define that the most suitable
solution is the route set and its respective headways that have
the lowest mean fitness value.

2) Operators: Genetic operators guide the algorithm to-
wards a solution to a given problem. They mimic natural
world processes, such as survival of the fittest, reproduction
or mutation.

3) Selection: In each generation, individuals are selected
from the population to mate and generate offsprings for the
next generation. Tournament Selection was used as the selec-
tion mechanism. The probability of selecting each individual
i is given by

pi =
ΣN

j=1fj

fi
,

where N is the population size and fi is the value of the
objective function of individual i.

4) Crossover: The crossover operator swaps routes at each
route index, between the two selected parents with probability
pswap = 1

R , where R is the number of routes.
5) Mutation: The mutation operator is applied to the two

offsprings that result from the crossover step. The mutation
process is designed to select routes that have less demand
more often, as the probability of select one route is: [20]

pl =

1
dsij∑

q∈L
1

dsrs

where i and j are the terminals of route l, L is the route
set, r and s are the terminals of route q, and dsij is the total
number of entries in the OD matrix that are satisfied, without
any transfer, by using route l, that connects terminals i and j.

After route selection, it is applied a small modification with
a high probability pms and a big modification with a low
probability 1− pms.

• Small modification: selects one of the route terminals
with the same (0.5) probability and applies one of two
operators:

– deletes the selected route terminal, with probability
pdelete.

– extends the selected route, adding a new stop in the
selected route terminal, with probability 1− pdelete
The new stop is chosen at random from among the
adjacent stops to the chosen terminal, in the road
network graph. If the selected route terminal is the
route’s first stop, the new stop is prepended to the
route. If the selected terminal is the route’s final stop,
the new stop is appended to the route.

• Big modification: Selects one of the route terminals (say
terminal i) with the same (0.5) probability, and then
selects a new terminal k, with the following probability:

Pk =
dsik∑
rϵN dsir

The selected route will be replaced by a new route that
is the shortest path between terminal i and terminal k.

6) Elitism: One of the inputs of Genetic Algorithm param-
eters is elite size. This value ensures that the most fitting
individuals from the current generation are copied to the next
one.

D. Frequency Setting
In this section, we will describe frequency setting proce-

dures during Genetic Algorithm progress. At start, headway
interval is defined between variables (min headway) and
(max headway).

After that, two separated frequency setting methodologies
can be followed:

• Random Search: Randomizes all the headway values
associated to the route set between all .

• Local Search: progressively vary all the headway values
associated to the route set.

1) Initial and Update Frequencies Process: At the pro-
cedure start, as regard to random search, initial headways
are completely randomized. As Genetic Algorithm evolves,
for each new generation, it is maintained random change in
headway values. On the opposite, neighbour search starts off
all headway with mean value between limit interval values,
(min headway) and (max headway). After that, each new
headway value is subject to a much smaller change operation.
Consequently, each number may vary a difference of [−5, 5].

2) Service Level across matrices: Between operator cost
values associated with the same route set, our optimization
algorithm does not allow disparities above a certain percentage
throughout day planning.

In such option, our work ensures that there is a balance
between demand and given level of service. Empirically,
waiting times, in other words route headways, are way higher
at night than during peak hours, as a consequence of decline
on demand. Accordingly, keeping the same level of service
(route headways) becomes financially unsustainable to transit
company.

Peak hours are more profitable to operators than calm
seasons.



As a way of simulating resources management, we consid-
ered this operation in this thesis.

3) Small Frequency Adjustment: When there is a disparity
between two matrices operator costs above a pre-determined
value, there is a method that attempts to converge these values.

On the one hand, by subtracting an integer ∈ [0, 2] to
the route headways (increase frequency) associated with the
matrix that has higher fitness value and, on the other hand, by
summing an integer ∈ [0, 2] to the route headways (diminish
frequency) of the lower fitness value matrix, we intend to
normalize both values. The operatation is common to both
frequency searches.

This means that through boosting route bus appearances
(route frequency), matrix fitness value tends to decline.

E. Routes Overlapping

During genetic algorithm progress, when calculating fitness
value of a matrix, there is a decisive step that aims to check
whether exists equal segments among route set. By doing this,
we intend to check if there are alternatives to an OD trip. It is
not considered an option even if it includes that exact OD pair,
but when there is the same OD segment. This option is due to
the fact that the route generation method already contemplates
shortest paths.

The aforementioned constraint is quite suitable as it approx-
imates our work with the reality, particularly when calculating
some metrics, such as empty seats and waiting time (method
explained on II-B).

As far as empty seats is concerned, routes overlapping
determination is absolutely vital, because can give us the
number of bus appearances of routes that cover an intended
OD segment.

Firstly, empty seats are calculated by iterating the bus
capacity (in our case 85 seats, following Carris fleet capacity
1), with the difference between boardings and alightings in
each stop throughout a route progession. For each route, it
will be computed the mean empty seats value of consecutive
stops journeys.

In the end, the final average empty seats value to all the
network corresponds to the mean value between every route
empty seats value. Below a small illustration of Average
Empty Seats metric calculation.

V. RESULTS

This chapter presents the results of applying the optimiza-
tion methodology earlier described to the bus network in
Lisbon.

A. Evaluation and Metrics

In the first set of experiments, the routes were generated
from scratch, using the initialization method described in
Section 4. Several tests were conducted for the number of
routes R = 150 in order to assess headway adjustment method
(Local and Random) and metric weights variation (passenger
and operator weight).

1https://www.carris.pt/descubra/frota

Additionally it is analysed in detail most optimized solution
among experiments conducted.

Later, it is conducted another set of tests, where the existing
(real) bus network was used as a starting point to the opti-
mization process, serving as the initial solution. The analysis
method is equal to the described on the above paragraph.

All tests do accept a maximum difference among matrices
operator costs of 20%. We opted for this value because on
small experiments, with less routes and iterations, the biggest
disparity on matrices empty seats was frequently above this
threshold.

Several combinations of values for the following parameters
were used in both tests:

• Operator Weight (operator weight)
• Passenger Weight (passenger weight)
• Search Method:

– Local Search
– Random Search

To evaluate the results, the following metrics of objective
function (described on Section 4) were considered:

• Fitness Value
• Average In-Vehicle Time (ATT )
• Average Waiting Time (AWT )
• Average Number of Transfers (ATR)
• Average Empty Seats (AES)
• Passenger Cost = ATT + AWT + AWT*ATR
• Average Headway

Genetic algorithm parameters were not the aim of this work,
so we fixed them across all tests: pop size=16, elite size=4,
t=4, pms=0.7, pdelete=0.6

Across all tests, each route headway lies within an interval
between min headway=7 and max headway=25.

B. Optimization from Scratch

In the initial tests with a smaller network of 150 routes,
which are generated from scratch, we evaluated search fre-
quency models and metric weights changes. We opted to
assign values of 0.4 and 0.1 to operator metric, together with
0.6 and 0.9 to passengers’, because we would like to test two
situations. Firstly, where metrics have a balanced value (first
case, 0.4 and 0.6), and the second, where there is a heavy
importance given to passengers (0.1 and 0.9).

It is worth to mention that in our tests, passengers have
always an higher importance assigned, since we have larger
amount of information available associated with them and
consequently more metrics to assess, than operators cost,
which is limited regarding matrices values already. Another
relevant reason is that the absolute value of empty seats is
way greater than passenger costs putted together.



Search Objective
Function ATT (min) AWT (min) Empty Seats

Random 39.83 (−10.62%) 6.68 5.725 77
Local 41.9 (−5.11%) 8.31 6.12 76

TABLE I
FINAL METRIC VALUES - operator weight=0.4,

passenger weight=0.6

Fig. 2. Fitness Value and Average Headways - operator weight=0.4,
passenger weight=0.6

Fig. 3. Passenger Cost and Average Empty Seats- operator weight=0.4,
passenger weight=0.6

Search Objective
Function ATT (min) AWT (min) Empty Seats

Random 21.79 (−27.35%) 6.92 5.54 78
Local 23.17 (−21.75%) 7.45 6.01 77

TABLE II
FINAL METRIC VALUES - operator weight=0.1,

passenger weight=0.9

Fig. 4. Fitness Value and Average Headways - operator weight=0.1,
passenger weight=0.9

Fig. 5. Passenger Cost and Average Empty Seats - operator weight=0.1,
passenger weight=0.9

First experiments show that Random Search method has a
better performance than Local Search.

Random Search computes optimal solution after around 400
iterations, as well as, it rapidly decreases fitness during the
first 200 iterations. While Local Search on 0.4/0.6 test soon
reaches it optimal solution and barely changes during the rest
of the process. On contrary, during 0.1/0.9 test it gradually
adjusts it optimal solution, however nearly in the end it has a
quick fitness decrease.

Regarding cost weight changes, on the test where it is given
a greater importance to the operator cost (0.4), there is a
reduction on average empty seats, which is natural given the
bigger preoccupation to the company cost.

1) Optimized solution in detail: Using Random Search and
operator weight=0.1, passenger weight=0.9, which was
the best parameters combination (−27.35% of improvement
on fitness value), we present in detail metrics for each matrix.

Fig. 6. Fitness Value and Average Headways - operator weight=0.1,
passenger weight=0.9

Fig. 7. Passenger Cost and Average Empty Seats - operator weight=0.1,
passenger weight=0.9

Night period clearly has a greater fitness value, mostly
because it has a higher average empty seats value, which is
somehow acceptable given demand level. However, passenger
costs are rather balanced among all matrices.

The huge average empty seats difference between fourth
matrix and the others is not mirrored on the increase of matrix



fitness value, because in this experiment operator weight is
reduced.

C. Optimization of the existing network

Similarly, we tested the methodology using the real route
set of Carris as a starting point. Carris network comprises R
= 308 routes.

The variations on passenger and operator weights were
equal to the above experiments performed. Firstly, by assign-
ing 0.6 to passengers’ and 0.4 to operators metrics. On the
following test, 0.9 to passengers costs and 0.1 to operator
metric.

Search Objective
Function ATT (min) AWT (min) Empty Seats

Random 41.49 (−1.45%) 10.01 7.58 72
Local 41.55 (−1.20%) 10.16 7.6 72

TABLE III
FINAL METRIC VALUES - operator weight=0.4,

passenger weight=0.6

Fig. 8. Fitness Value and Average Headways - operator weight=0.4,
passenger weight=0.6

Fig. 9. Passenger Cost and Average Empty Seats - operator weight=0.4,
passenger weight=0.6

Search Objective
Function ATT (min) AWT (min) Empty Seats

Random 26.6 (−1.17%) 10.36 7.49 72.75
Local 26.64 (−0.53%) 10.4 7.57 72.5

TABLE IV
FINAL METRIC VALUES - operator weight=0.1,

passenger weight=0.9

Fig. 10. Fitness Value and Average Headways - operator weight=0.1,
passenger weight=0.9

Fig. 11. Passenger Cost and Average Empty Seats - operator weight=0.1,
passenger weight=0.9

Similarly to optimization from scratch, Random Search had
a better performance than Local Search.

Curiously, the fitness improvement, in equal conditions of
weights assignment, was pretty low compared to experiments
with R = 150 (1.17 <<27.35). The reason may be the wider
range of routes and headways number, which can lead to a
more difficult optimization procedure.

1) Optimized solution in detail: Likewise, as it made on
optimization from scratch analysis, we detail best solution
matrices.

Using Random Search and operator weight=0.4,
passenger weight=0.6, which had the best performance
(−1.45%), we present in detail metrics for each matrix.

Fig. 12. Fitness Value and Average Headways - operator weight=0.4,
passenger weight=0.6

Fig. 13. Passenger Cost and Average Empty Seats - operator weight=0.4,
passenger weight=0.6



The two matrices that include peak hours (blue and green
lines) had practically similiar results. Moreover, the third
matrix (orange) produced a slightly higher fitness value, due
to higher average empty seats metric.

Fourth matrix (red) performed the highest number of empty
seats and the lowest on passenger costs and headways as well,
providing that more bus appearances result in emptier buses.

D. Overall Analysis

We may conclude that Random Search is the best perform-
ing method as it minimizes best the ojective function across
all tests performed. The possible reason is that by randomizing
values, we can rapidly test a large scope of possible solutions,
with diverse headway values. Contrarily, Local Search slightly
varies headway values through new generations. As a result
of having a large set of routes and its associated headways,
Local Search method leads to an homogeneity of headway
values tested. Correspondingly, graphs plotted demonstrate
the effective reduction on fitness values on Random Search
experiments.

As far as metric weights is concerned, the heavier operator
weight is, the higher fitness value is, which is somehow obvi-
ous, given absolute metric value differences. However, taking a
closer look at the graphs, it is demonstrated on all experiments
that when there is a certain balance between passenger costs
(AWT + ATT + AWT*ATR) and average empty seats
(AES). While there is a gradual reduction on passenger costs
we can check also a compensation by increasing empty seats.

In perspective, it is consistent. A reduction on waiting
time, caused by a decrease on headway (increase on bus
appearances) and consequently leads to more empty seats.
Plots of fixed max/min headway confirm that. Moreover, it is
clearly observed that on matrices that include peak hours (first
and third matrices, morning and afternoon, respectively), there
are less average empty seats, as there is way more demand. On
experiments, which was given a greater importance to operator,
resulted in a reduction on empty seats.

Empirically, on our perspective as passengers, every public
transportation operator adjusts service level, given demand.
On the one hand, during peak periods, there are low route
headways (high frequency) and reduced waiting time. On
the other hand, during night hours there is an adjustment of
the service level, mainly for management reasons. It is not
financially feasible to keep high frequencies all day, as demand
hugely vary as well.

By stating that, on both solution matrices plots, the previ-
ously mentioned does not occur. While there is a reduction
on demand, mirrored by average empty seats metric matrices
differences, the same adjustment on headways did not take
place. As can be noted on plots, there is few difference among
matrices average headways. Curiously, on peak times matrices,
the headway is increased to compensate a drop on average
empty seats. On the night matrix, the inverse happens. It is
reduced average headways and consequently passenger costs,
in order to balance the high number of empty seats.

The reason to all this is that our methodology computes the
most optimised solution as the most balanced among matrices
fitness values (Figure 1), hence the difference in headways
(also waiting times) is low, which is further balanced by the
operator’s cost control during the day. So the set of headways
that harmonize passenger and operator costs are considered
the most appropriate to the optimization process.

E. Comparison to existing network

As far as real network comparison is concerned, frequen-
cies.txt file present on GTFS data, describes trips headways
of CARRIS real routes. Thus, we analyzed that file in order
to assess our results, using same intervals.

Matrices Optimized Average
Headway (min)

Real Average
Headway (min)

Difference
(%)

6:30H - 11H 15.9 16.2 −1.8
11H - 15:30H 15.8 17.2 −8.8
15:30H - 20H 16.6 15.5 +7
20H - 0:30H 15.3 26 −70

TABLE V
COMPARISON BETWEEN REAL AND COMPUTED HEADWAYS ON RANDOM

SEARCH - operator weight=0.4, passenger weight=0.6

On the first three periods, the computed headway values are
somewhat similar to real ones. In the first, practically the same
result, and on the second and third, a relevant decrease and
increase, respectively.

Notwithstanding, on fourth (night) matrix there is an enor-
mous reduction of 70% on average headway values.

VI. CONCLUSION

This thesis developed a methodology to tackle Transit
Network Design and Frequency Setting Problem simultane-
ously. The computed method was applied to real transit data,
provided by CARRIS, the bus operator of the city of Lisbon.
The data sources utilized were GTFS and AFC data.

Firstly, it was inferred trip destinations, given that passen-
gers only validate fare ticket at boarding on Carris Network.
47.7% of destinations were deduced. After that, a method
to uniformly allocate uninferred destination trips throughtout
routes was employed, with the intent of handle all available
data to the forward steps. In the end of this process, we divided
the demand in four different matrices that represent periods
of a week day: morning, lunch, afternoon and night. These
computed matrices were used as input data to approach the
problem of the work.

With the resulting matrices, it was described network and
road representations, as well as the Genetic Algorithm aspects,
namely its operators and objective function to the optimization
problem. Furthermore, it was explained a couple of actions
about frequency adjustment, such as two different approaches
regarding frequency optimization searching of solutions com-
puted by GA: Local Search and Random Search. The results
of the conducted experiments proved that Random Search has
a better performance than Local method. One of the reasons
is that small variations on headways, lead to an homogeneity
on values and a small scope of probable values. On contrary,



Random Search rapidly tests a wide range of values and finds
optimal values.

The methodology managed to find the optimized solution
with lowest average matrices values, which resulted on matri-
ces metric values quite similar to each other. Besides that, it
has not been expressed demand fluctuation on metric values.
For instance, waiting time and headways are not increased on
night matrix, to compensate demand decrease.

Under these circumstances, we do believe that computed
methodology represents a great step on real public transporta-
tion planning solution. Not only by how metrics are calculated,
but also by how methodology was developed. Providing that,
there is more data, namely from transit companies activity,
this methodology can preview a wider range of situations
and give a closer picture of reality. Perhaps by assigning day
periods different weights to optimization process, this work
can be a useful tool when tackling Transit Network Desing
and Frequency Setting problems.

A. Limitations

The main limitation identified was the way operator costs
were computed. Empty seats alone are not a good parameter
to represent operator costs by itself, it is a rather simple
model. Without real information, for instance about fuel costs
or fleet maintenance, it became quite difficult to develop a
more robust representation. Given available data, we fancy a
way to estimate empty seats to symbolize it. Even though,
having only access to AFC data, sometimes imprecise and
inconclusive, it could not depict a real picture of boardings and
alightings still. A more feasible way of calculating it would
be desirable, namely taking advantage of Automated Passenger
Counters (APC) system, if available.

Another relevant absence of data observed was AVL. From
the Transit Network design, it would represent higher des-
tinations and interchanges inferred rates. Moreover, as far
as frequency optimization is concerned, AVL data available
would mean a more comprehensive notion regarding bus
appearances and a more meticulous analysis on waiting time,
due to the fact that provides real traffic impact on bus activity.

Ultimately, the lack of matching between route stops on
opposite directions forms an additional barrier. Since all of
opposite stops are on the other side of the street, providing that
there are many one-way streets. Without further information,
it becomes quite difficult to give a closer picture of a real
network which is composed by symmetric routes.

B. Future work

The natural path to this work could be to continue opti-
mization process to the next steps of the public transportation
planning, particularly timetabling development and resources
allocation, included on tactical and operational choices, re-
spectively.

As mentioned in the subsection of Limitations, if we had at
disposal a matching between opposite route stops, a procedure
that generates symmetric routes would promote a real bus
network representation. In this manner, it would be quite

natural to add another metric, fleet allocation to network. By
calculating round trips duration this could result on number of
buses required to each route.

In addition, other relevant aspect to consider in the future
could be assign economic costs to the objective function.
Besides fuel costs that are directly impacted by network length,
it would favorable to add some metrics, such as salaries or
fleet maintenance costs. On revenues, ticket fares revenues
would be applied. These data could be kindly provided by
the operator to further researches.
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